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Regular generalized polyomino graphs
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A generalized polyomino graph is regular if it can be subjected to a series of special
cell-shedding transformations, square by square, down to a single square. In this paper,
we give a necessary and sufficient condition to determine whether or not a generalized
polyomino graph is regular.
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1. Introduction

Polyomino graphs [1], also called square-cell configurations [2] or chess-
boards [3] have useful applications in statistical physics and in modeling problems
of surface chemistry (cf. Ref. 2 and the references therein). Moreover, many
interesting combinatorial subjects can be produced from them, such as hyper-
graphs [1], domination problem [3], rook polynomials [4], domino polynomials,
etc.

A polyomino graph is a connected finite subgraph of the infinite square lat-
tices of the plane such that each interior face is surrounded by a regular square
of side length 1 (called a cell) and each edge belongs to at least one square. A
generalized polyomino graph G is a graph obtained by deleting some interior
vertices and interior edges from a polyomino graph such that there is at least
one “hole” (i.e., the interior face which is not a square) and each of its edges
belongs to at least one square of G. In this paper, we concentrate ourselves to
those generalized polyomino graphs each of which has exactly one “hole”.

For convenience, we always place a polyomino graph in question on a plane
so that two edges of each square are vertical.
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In [2], Harry and Mezey studied the techniques for the reduction of
polyomino graphs to simple ones by cell-shedding processes based on an algo-
rithm of symmetrically removing certain peripheral cells from the graph until
some reference graphs is obtained. In this paper, we define three simple cell-shed-
ding processes, and give a necessary and sufficient condition to recognize those
generalized polyomino graphs that can be subjected to a series of special cell-
shedding processes, square by square, down to a single square.

2. Definitions and lemmas

A perfect matching of a graph G is a set of independent edges of G cov-
ering all vertices of G. An edge of a graph G is said to be allowed if it belongs
to some perfect matching of G and forbidden otherwise. A connected graph G
is said to be elementary if all its allowed edges form a connected subgraph of
G. It is known that a connected bipartite graph G is elementary if and only if
each of its edges is allowed. Let G be a bipartite graph with a perfect match-
ing M and C be a cycle. If the edges of C appear alternately in M and E(G)\M
then C is called an M–alternating cycle. The above terminology is due to Lovász
and Plummer [5]. For elementary polyomino graphs and elementary generalized
polyomino graphs, the following theorems are known:

Theorem 2.1 [6]. Let G be a polyomino graph. Then G is elementary if and only
if the perimeter of G is an M– alternating cycle for some perfect matching M of
G.

Theorem 2.2 [7]. Let G be a generalized polyomino graph. Then G is elementary
if and only if each of the outer and inner perimeters of G is an M– alternating
cycle for some perfect matching M of G.

Let G be an elementary plane bipartite graph. A path P of G with odd
length is called a reducible ear if all its interior vertices are of degree 2 and G−P
is elementary, where G − P is the subgraph of G obtained by deleting the edges
and the interior vertices of P from G. A reducible ear decomposition of G is a
representation of G in the form G = x + P1 + P2 +· · ·+ Pr such that x is an edge,
G0 = x , for 1 � i � r , Pi is a path of odd length, Gi = x + P1 + P2 + · · · + Pi
and Pi has no other vertices in common with Gi−1 except its two end vertices.
Note that all the Gi

′s are also elementary.
Zhang and Zhang [8] proved that a plane bipartite graph G is elementary if

and only if it is connected and each of its edges is allowed, and that a graph G
is elementary and bipartite if and only if G has a reducible ear decomposition.
By these results, an elementary plane bipartite graph G is connected and has at
least one reducible ear decomposition.
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Figure 1. Three modes of a square in a polyomino graph or a generalized polyomino graph.

S
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Figure 2. A cell-adding process of mode L1 (cell-shedding process of mode L1).

A cell-adding process of mode L1 (L3)is adding one square to a polyomino
graph or a generalized polyomino graph such that the added square acquires the
mode L1 (L3) (see figures 1–3).

Since an elementary polyomino graph is a plane bipartite graph, all reduc-
ible ear decompositions are in the form G = x + P1 + P2 +· · ·+ Pr , where x + P1
is a square and Pi (2 � i � r ) are paths of either length 3 or 1. Thus an elemen-
tary polyomino graph with h + 1 squares can be generated from an elementary
polyomino graph with h squares by a cell-adding process of mode L1 or L3. This
fact implies that an elementary polyomino graph can be generated from a single
square by a series of cell-adding processes of mode L1 or L3, each time only one
square is added.

The opposite process of a cell-adding process is a cell-shedding process.
Thus, the above fact also implies that an elementary polyomino graph can be
subjected to a series of cell-shedding processses of mode L1 or L3, square by
square, right down to a single square.

Note that after a special cell-adding process of mode L2, i.e., adding one
square to a polyomino graph such that the added square acquires the mode L2,
then a hole appears. This means that the graph obtained by a cell-adding process
of mode L2 is a generalized polyomino graph. It is obvious that a polyomino

S

(a) (b)

Figure 3. A cell-adding process of mode L3 (cell-shedding process of mode L3).
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S
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Figure 4. A cell-adding process of mode L2 (cell-shedding process of mode L2).

graph is obtained from a generalized polyomino graph by a cell-shedding pro-
cess of mode L2 from a generalized polyomino graph (see figure 4).

Definition 2.3. A generalized polyomino graph is regular if it can be subjected to
a series of cell-shedding processes of mode L1 or mode L3 plus one cell-shedding
process of mode L2, square by square, down to a single square.

Evidently, any regular generalized polyomino graph can be generated from
a single square by a series of cell-adding processes of mode L1 or mode L3 plus
one cell-adding process of mode L2.

We define the outer perimeter C0 of a generalized polyomino graph G to be
the perimeter of the external region of G, the inner perimeter Ci of G to be the
perimeter of the unique hole of G. A perimeter of G is either the outer perim-
eter C0, or the inner perimeter Ci . A vertex not belonging to the perimeters of
G is said to be an interior vertex of G.

A square of a generalized polyomino graph G is said to be a perimeter
square of G if it has at least one edge lying on the perimeter of G; otherwise,
it is said to be an inner square of G. An edge of G is said to be perimeter edge
if it lies on the perimeter of G; otherwise, it is said to be an inner edge of G.
An inner edge of G is said to be a chord if its two end-vertices are on the outer
perimeter of G. Let G be a generalized polyomino graph with a chord (denoted
by e). It is not difficult to see that G is separated by e into two parts (denoted
by Ge and G

′
e, respectively), one of them is a generalized polyomino graph , the

other is a polyomino graph such that each of them has a copy of e. For conve-
nience, we assume Ge that is a generalized polyomino graph and G

′
e is a polyo-

mino graph (see figure 5).

Lemma 2.4. Let G be a generalized polyomino graph with a perfect matching M
such that both the inner and the outer perimeters of G are M-alternating cycles,
and e be a chord of G. Then Ge is a generalized polyomino graph such that both
the inner and the outer perimeters of Ge are M ′-alternating cycles for some per-
fect matching M ′ of Ge, and G

′
e is an elementary polyomino graph.

Proof. Let G be a generalized polyomino graph with a perfect matching M
such that both the inner and the outer perimeters of G are M- alternating cycles,
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Figure 5. e is a chord of G.

and e be a chord of G. Then the two edges of M covering the end vertices of e
belong to one of Ge and G ′

e simultaneously because the number of vertices of
Ge and G ′

e are both even. Without loss of generality, let e1, e2 ∈ M (see figure
5), then M ′ = M ∩ E(Ge) is a perfect matching of Ge such that both outer and
inner perimeters of are M ′-alternating cycles. M∗ = (M ∪ {e} ∩ E(G ′

e)) is a per-
fect matching of G

′
e such that the perimeter of G ′

e is an M∗-alternating cycle, by
theorem 2.1, G ′

e is an elementary polyomino graph.

3. Regular generalized polyomino graphs

We are now in the position to formulate our main result.

Theorem 3.1. A generalized polyomino graph G is regular if and only if there is
a perfect matching M of G such that both the inner and the outer perimeters of
G are M-alternating cycles.

Proof of necessity. Suppose that G is a regular generalized polyomino graph.
By definition, G can be generated from a single square by a series of cell-adding
processes of mode L1 or L3 plus one cell-adding process of mode L2 in three
steps:
Step 1. A polyomino graph G1 is obtained by a series of cell-adding processes
of mode L1 or L3 to a single square. Each time only one square is added.
Step 2. A generalized polyomino graph G2 is formed by one cell-adding process
of mode L2 to G1.
Step 3. The final generalized polyomino graph G is obtained by a series of cell-
adding processes of mode L1 or L3 to G2.

By the theory of reducible ear decomposition for elementary bipartite
graphs, G1 is elementary since G1 is obtained by a series of cell-adding pro-
cesses of mode L1 or L3 to a single square. Hence the perimeter of G1 is an M1-
alternating cycle for some perfect matching M1 of G.

Suppose that square S is added in step 2, i.e. S is a square of mode L2 (cf.
figure 4). Because both a square and a generalized polyomino are plane bipartite
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Figure 6. The smallest regular generalized polyomino graph.

graphs, they have no cycle with odd length. Then either e1 and e2 belong to M1
simultaneously; or e1 and e2 do not belong to M1 simultaneously.

If e1 and e2 do not belong to M1, let M2 = M1, then M2 is a perfect
matching of G2, and both the outer perimeter and inner perimeter of G2 are M2-
alternating cycles.

If e1 and e2 belong to M1. Let E(C) be the edge set of the perimeter of G1,
let M2 = M1

⊕
E(C), where M2 = M1

⊕
E(C) denotes the symmetric difference

of M1 and E(C). Then M2 is a perfect matching of G2 such that both the outer
and inner perimeters of G2 are M2-alternating cycles.

In step 3, G is obtained by a series of cell-adding processes of mode L1 or
L3 to G2. It is not difficult to check that both the inner and the outer perimeters
of G are M-alternating cycles for some perfect matching M of G. The proof of
necessity is thus completed.

Proof of sufficiency. Suppose that a generalized polyomino graph G has a per-
fect matching M such that both the inner and the outer perimeters of G are
M-alternating cycles. We want to prove that G is subjected to a series of cell-
shedding processes of mode L1 or mode L3 plus one cell-shedding process of
mode L2, square by square, down to a single square. We proceed by induction
on the number of squares of G. It is not difficult to see that the smallest gener-
alized polyomino graph satisfing the condition of the sufficiency is the one with
10 squares as depicted in figure 6. One can check that it is regular.

Now suppose that G has h (h > 10) squares. We distinguish three cases.

Case 3.1. G has a square of mode L2. If G has a perfect matching M such
that both the inner and outer perimeters of G are M-alternating cycles, then G
has four perfect matchings with the same property. Without loss of generality,
assume that M is one of these perfect matchings such that e′ and e′′ do not
belong to M (see figure 4(b)). G ′ is obtained by one cell-shedding process of
mode L2. Let M ′ = M , it is evident that M ′ is a perfect matching of G ′ and the
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Figure 7. Illustrations for subcase 3.1.

perimeter of G ′ is a M ′- alternating cycle. By induction hypothesis G ′ is regular.
Therefore, G is regular.

Case 3.2. G has a square of mode L1. It is obvious that G has a perfect match-
ing M1 such that both the outer and inner perimeters of G are M1-alternating
cycles and e ∈ M1 (see figure 2(b)). G ′ is obtained by a cell-shedding process of
mode L1. Let M ′ = M −{e}, then M ′ is a perfect matching of G ′ such that both
outer and inner perimeters of G ′ are M ′-alternating cycles (see figure 2(a)). By
induction hypothesis, G ′ is regular. So is G.

Case 3.3. G has no square of mode L1 or L2. G can be placed on the plane in
four different positions such that in each position two edges of each square are
parallel to the vertical line. For each of the four possible positions of G, for each
row we can label a series of outer perimeter squares S1, S2, . . . , Sn as shown in
figure 7. The squares Si−1 and Si (2 � i � n) have one edge in common. While
there is no square belonging to G on the left-hand side of S1 and on the right-
hand side of Sn (cf. figure 7, marked by star).

Subcase 3.1. G has a top row with n � 3 for some of its four possible positions.
First, we consider the case that square H1 belongs to G. We claim that G con-
tains square S′. In fact, if G does not contain square S, then G must contain
square S′ since G has no square of mode L1. If G contains square S, suppose
G does not contain square S′, by the necessary condition of the theorem, G
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has a perfect matching M such that the inner and outer perimeters of G are
M-alternating cycles. By theorem 2.2, G is elementary. This fact implies G is 2-
connected. So the common vertex v of square S and S′ is not a cut-vertex, i.e.
v lies on both the inner and the outer perimeters of G. Then v is covered by
two edges belonging to M . One of them is an edge of the inner perimeter, the
other is an edge of the outer perimeter of G. Contradicting that M is a perfect
matching of G. Thus G must also contain square S′ (see figure 7). Without loss
of generality, let e, e3 ∈ M .

Subcase 3.1.1. If e4 ∈ M , then let G ′ = G − {e, e′, e1, e′
1}, i.e. G ′ is obtained by

a cell-shedding process of mode L3 (cf. figure 7, square S2) and a cell-shedding
process of mode L1 (cf. figure 7, square S1) . Let M ′ = M −{e}, then M ′ is a per-
fect matching of G ′ such that both the outer and the inner perimeters of G ′are
M ′ -alternating cycles.

Subcase 3.1.2. If e4∈̄M , then h1 ∈ M . Note that G contains squares S′ and H1,
then h1 does not lie on the perimeters of G. So G contains square S′

1.

Subcase 3.1.2.1. If r1 ∈ M . Then the perimeter of H1 is an M-alternating cycle.
We claim r1 is not an outer perimeter edge. Otherwise, let E(H1) be the edge set
of the perimeter of H1, let M∗ = M

⊕
E(H1), then e ∈ M∗ and e4 ∈ M∗. On

the other hand, let G ′ = G −{r1}, then G ′ is a generalized polyomino graph, and
both the inner and the outer perimeters of G ′ are M∗-alternating cycles. Because
e′

1 is a chord of G ′. By the proof of lemma 2.4, the two edges of M∗ covering the
end vertices of e′

1 either belong to Ge′
1

simultaneously or belong to G ′
e′

1
simulta-

neously. It contradicts that e ∈ M∗ and e4 ∈ M∗. Since G has no square of mode
L2, then r1 is not an inner perimeter edge. So r1 is an inner edge, i.e. H1 is an
inner square of G. Let M∗ = M

⊕
E(H1), then e4 ∈ M∗, i.e. the case is similar

to subcase 3.1.1. G ′ is obtained by cell-shedding process of mode L3 and cell-
shedding process of mode L1. So both the inner and the outer perimeters of G ′
are M∗-alternating cycles.

Subcase 3.1.2.2. If r1∈̄M , then e′
3 ∈ M . Assume r1 is an outer perimeter edge of

G, then let G ′ = G − {r1}, i.e. G ′ is obtained by cell-shedding process of mode
L3 . Let M ′ = M , then M ′ is a perfect matching of G ′ such that both the outer
and the inner perimeters of G ′ are M ′-alternating cycles.

Assume r ′
1 ∈ M and R1 is an inner square. Let H∗ be the subgraph of G

which contains only squares S4, R1, and C(H∗) be the set of edges of perimeter
of H∗. Then H∗ also is a polyomino graph and C(H∗) is an M-alternating cycle.
Let M∗ = M

⊕
C(H∗), then e, e4 ∈ M∗. It can be dealt with in a similar way as

in subcase 3.1.1., we omit the details.
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Assume r ′
1 ∈ M and r ′

1 is an inner perimeter edge. By the above discussion,
G must contain square W1. Let E(C ′′) be the edge set of the inner perimeter of
G, M ′ = M

⊕
E(C ′′) and G ′ = G − {r ′

1, r1, e4, e1}, G ′ is obtained by cell-shed-
ding process of mode L3, and one cell-shedding process of mode L2. Then M ′
is a perfect matching of G ′ such that the perimeter of G ′ is M ′-alternating cycle.
So G ′ is an elementary polyomino graph.

Repeating the above discussion, without loss of generality, we assume that
h1, h2, . . . , ht , w1, w2, . . . , wt−1 ∈ M ; S′, H1, H2, . . . , Ht , R1, . . . , Rt−1 are inner
squares of G and Wt is an outer perimeter square of G.

Since Wt is a square of outer perimeter of G, w′
t is an outer perimeter edge

of G, M covers two end vertices of w′
t . Then there must exist the following three

cases: (a) r ′
t ∈ M and r ′

t is a perimeter edge of G; (b) r ′
t ∈ M and Rt is an inner

square of G; (c) ht+1, rt+1 ∈ M .

Subcase 3.1.2.2.1. If r ′
t ∈ M , we claim r ′

t is not an outer perimeter edge. Other-
wise, let H∗ be a subgraph of G which contains exactly squares H1, R1, H2, R2,

. . . , Ht , Rt , and C(H∗) be the set of edges of the perimeter of H∗. Then H∗ is a
polyomino graph and C(H∗) is an M-alternating cycle. Let M∗ = M

⊕
C(H∗),

then e4 ∈ M∗ and e ∈ M∗. On the other hand, let G ′ = G − {r ′
t , rt , . . . , r ′

1, r1},
then both the inner and the outer perimeters of G ′ are M∗-alternating cycles.
Because e′

1 is a chord of G ′, by the proof of lemma 2.4, the two edges of M∗
covering the end vertices of e′

1 either belong to Ge′
1

or belong to G ′
e′

1
, simulta-

neously. It contradicts with e ∈ M∗ and e4 ∈ M∗. Then we have the following
two cases:

(1) Assume Rt is an inner square of G. H∗ and C(H∗) are defined as above.
Let M∗ = M

⊕
C(H∗), then e4 ∈ M∗ and M∗ is a perfect matching of

G such that both the outer and the inner perimeters of G are M∗-alter-
nating cycles. It can be dealt with in a similar way as in subcase 3.1.1.,
we omit the details.

(2) Assume r ′
t is an inner perimeter edge of G, let M ′ = M

⊕
E(C ′′) and

G ′ = G − {r ′
t , rt , . . . , r ′

1, r1, e4, e1}, i.e. G ′ is obtained by cell-shedding
processes of mode L3, and a cell-shedding process of mode L2 from G.
Hence G ′ is an elementary polyomino graph.

Subcase 3.1.2.2.2. If r ′
t ∈̄M . Similarly to the above discussion, we know that nei-

ther rt+1 is an outer perimeter edge of G, nor rt+1 is an inner perimeter edge of
G. So, we have the following three cases:

(1) Assume r ′
t is an outer perimeter edge of G, then let G ′=G −

{r ′
t , rt , . . . , r ′

1, r1}, i.e. G ′ is obtained by cell-shedding processes of
mode L3 from G. Let M ′ = M , then M ′ is a perfect matching
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Figure 8. (a) Illustration for subcase 3.2. (b) Illustration for subcase 3.3.1. (c) Illustration for
subcase 3.3.2.

of G ′ such that both the outer and the inner perimeters of G ′ are
M ′-alternating cycles. Hence G ′ is a generalized polyomino graph.

(2) Assume r ′
t is an inner perimeter edge of G, let M ′ = M and G ′ = G −

{r ′
t , rt , . . . , r ′

1, r1, e4, e1}, i.e. G ′ is obtained by cell-shedding processes of
mode L3 from G , and one cell-shedding process of mode L2 from G.
Hence G ′ is an elementary polyomino graph.

(3) Assume ht+1, rt+1 ∈ M , and Ht+1 is an inner square of G, it can
be dealt with in a similar way as in subcase 3.1.2.2.1 (1), we omit the
details.

Subcase 3.2. Now consider the case that H1 does not belong to G. Since G con-
tains no square of mode L1, there exists a square S′ which is of mode L3 (see
figure 8(a)). Otherwise, it contradicts the reducible ear decompositions of an ele-
mentary plane bipartite graph [8]. Without loss of generality, we may assume Ge
contains squares of mode L3. Then Ge can be reduced to subcase 3.1 or 3.3.

Subcase 3.3. For each of the four possible positions, for each top row of G, we
always have n = 2. Similar to the discussion of subcase 3.1, we know that G con-
tains S′. For M , without loss of generality, let e1, e′

2 ∈ M . Then h1 ∈ M . Thus
h1 is an inner edge of G. Hence G contains square S′

1.

If G does not contain the square R1 (G may contain the square S3, see fig-
ure 8(b)). Then H1 is outer perimeter square of G. Let G ′ be obtained by ele-
mentary tearing down H1 in mode L3 from G and elementary tearings down
S1and S in mode L1 from G. Let M ′ = M − {e1, e′

2}, then M ′ is a perfect
matching of G ′ such that both the outer and the inner perimeters of G ′ are M ′-
alternating cycles.

Subcase 3.3.1. There is at least one square in the right side of S2 (see figure 8(b)),
then it can be dealt in a similar way as in subcase 3.1, we omit the details.
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Subcase 3.3.2. There is no square on the right side of S2. Assume there are
squares on the right side of Si (3 � i � n − 1), then the discussion is entirely
similar to the discussion of subcase 3.3.1. Without loss of generality, suppose
that there is no square in the right side of S2, S3, . . . , St and St is a square in
the outer perimeter of G (see figure 8(c)). Since G has no square of mode L1,
G must contain Ht and Rt . Otherwise, G will have no perfect matching. Thus
we can execute a series of cell-shedding processes of mode L3 and L1 from G,
and obtain graph G ′ such that both the inner and the outer perimeters of G ′ are
alternating cycles of the same perfect matching.

By induction hypothesis, G ′ can be subjected to a series of cell-shedding
process of modes L1 and L3 plus one cell-shedding process of mode L2. Then
G can be subjected to a series of cell-shedding process of modes L1 and L3 plus
one cell-shedding process of mode L2. So G is regular. The proof is completed.
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